P.G. 1st Semester - 2018

MATHEMATICS

Paper : MMATCCT 105

Full Marks: 40

Time : 2 Hours
The figures in the right-hand margin indicate marks.
Candidates are required to give their answers in their own words as far as practicable.
Notations and symbols have their usual meaning.

Answer any five questions:

$$
8 \times 5=40
$$

1. What do you mean by action integral? State and verify the principle of least action. $1+7$
2. a) Define canonical transformation. Give an example of a phase-space transformation which is not a canonical.
b) Prove that the transformation:

$$
\begin{aligned}
& \mathrm{q}_{1}=\left(\frac{\theta_{1}}{\omega_{1}}\right)^{\frac{1}{2}} \cos \mathrm{P}_{1}+\left(\frac{\theta_{2}}{\omega_{2}}\right)^{\frac{1}{2}} \cos \mathrm{P}_{2} \\
& \mathrm{q}_{2}=-\left(\frac{\theta_{1}}{\omega_{1}}\right)^{\frac{1}{2}} \cos \mathrm{P}_{1}+\left(\frac{\theta_{2}}{\omega_{2}}\right)^{\frac{1}{2}} \cos \mathrm{P}_{2}
\end{aligned}
$$

$p_{1}=\left(\omega_{1} \theta_{1}\right)^{\frac{1}{2}} \sin P_{1}+\left(\omega_{2} \theta_{2}\right)^{\frac{1}{2}} \sin P_{2}$
$p_{2}=-\left(\omega_{1} \theta_{1}\right)^{\frac{1}{2}} \sin P_{1}+\left(\omega_{2} \theta_{2}\right)^{\frac{1}{2}} \sin P_{2}$
is a canonical transformation. If the Hamiltonian of the motion is
$\mathrm{H}=\frac{1}{2}\left(\mathrm{p}_{1}^{2}+\mathrm{p}_{2}^{2}\right)+\frac{1}{4} \omega_{1}^{2}\left(\mathrm{q}_{1}-\mathrm{q}_{2}\right)^{2}+\frac{1}{4} \omega_{1}^{2}\left(\mathrm{q}_{1}+\mathrm{q}_{2}\right)^{2}$,
derive the new Hamiltonian $K\left(Q_{1}, Q_{2}, P_{1}, P_{2}\right)$.
$(1+1)+(4+2)$
3. a) Show that a time-independent dynamical variable u will be a constant of the motion if the Poisson bracket of u and the corresponding Hamiltonian vanishes.
b) Using the Hamiltonian function, obtain the equation of motion of a particle of unit mass moving in a central force field, where the force varies inversely as the square of the distance from the centre of force.
$4+4$
4. a) Obtain the Lagrange's equation of motion of a dynamical system comprising of N number of particles having k holonomic bilateral constraints.
b) Show that all the co-ordinates of a Scleronomous dynamical system are linear function of time, if they are all cyclic.

$$
5+3
$$

5. a) Show that a necessary condition for the functional

$$
I[y(x)]=\int_{x_{1}}^{x_{2}} f\left(x, y, \frac{d y}{d x}\right) d x
$$

define over the space of all functions having continuous first order derivatives on [$\mathrm{x}_{1}, \mathrm{x}_{2}$] over the real field to be an extremum is that

$$
\frac{\partial f}{\partial y}-\frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right)=0, y^{\prime}=\frac{d y}{d x},
$$

where f is assumed to be twice differentiable with respect to its arguments. Is this condition a sufficient condition? Justify your answer.
b) The Lagrangian L for the motion of a particle of unit mass is given by

$$
\mathrm{L}=\frac{1}{2}\left(\dot{\mathrm{x}}^{2}+\dot{\mathrm{y}}^{2}+\dot{\mathrm{z}}^{2}\right)-\mathrm{V}+\dot{\mathrm{x}} \mathrm{~A}+\dot{\mathrm{y}} \mathrm{~B}+\dot{\mathrm{z}} \mathrm{C}
$$

where $\mathrm{V}, \mathrm{A}, \mathrm{B}, \mathrm{C}$ are functions of $(\mathrm{x}, \mathrm{y}, \mathrm{z})$. Show that the equation of motion are

$$
\ddot{x}=-\frac{\partial V}{\partial x}+\dot{y}\left(\frac{\partial B}{\partial x}-\frac{\partial A}{\partial y}\right)-\dot{z}\left(\frac{\partial A}{\partial z}-\frac{\partial C}{\partial x}\right)
$$

and two similar equation.
6. a) Obtain Euler's equations of motion for a rigid body rotating about a point fixed in the body.
b) For a Scleronomous dynamical system of n degrees of freedom prove that the kinetic energy is a homogeneous quadratic function of the generalised velocities.
$4+4$
7. a) Prove that shortest distance between any two points in a plane is a straight line.
b) Obtain Hamiltons' equation of motion of a dynamical system whose Hamiltonian is given by

$$
\begin{equation*}
\mathrm{H}=\mathrm{q}_{1} \mathrm{p}_{1}-\mathrm{q}_{2} \mathrm{p}_{2}-\mathrm{aq}_{1}^{2}+\mathrm{bq}_{2}^{2} \tag{2+3}
\end{equation*}
$$

Hence solve the problem.
8. a) Establish the Jacobi's Identity for the dynamical variables X, Y and Z in terms of Poisson brackets.
b) If $\mathrm{H}=\mathrm{qp}^{2}-\mathrm{pq}+\mathrm{bp}$, where b is constant, then show that,

$$
\begin{aligned}
& \mathrm{p}=\frac{1}{2}\left(1+\operatorname{coth} \frac{\mathrm{t}+\varepsilon}{2}\right) \\
& \mathrm{q}=\operatorname{coshh}^{2} \frac{\mathrm{t}+\varepsilon}{2}-b \sinh \left(\frac{\mathrm{t}+\varepsilon}{2}\right)
\end{aligned}
$$

Also show that $\mathrm{H}=\frac{\mathrm{b}}{2}+\frac{\mathrm{c}}{4}$, where c and ε are arbitrary constant. $4+4$

