

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 2nd Semester Examination, 2020

CC3-MATHEMATICS

REAL ANALYSIS

MATH 21 HCC-III

Full Marks: 60

ASSIGNMENT

The figures in the margin indicate full marks. All symbols are of usual significance.

Answer Question No. 1 and any *four* from the rest

- 1. Attain *all* the following questions:
 - (a) What is a countable set?
 - (b) Give an example of a set which do not contain its supremum and infimum.
 - (c) Find the derived set of an open interval (a, b) of real numbers.
 - (d) Let $x_n = \frac{3n+1}{n+2}$. Prove that the sequence $\{x_n\}$ is a strictly monotone increasing.
 - (e) Define the greatest lower bound of a set of bounded set of real numbers.
 - (f) Give an example of a sequence $\{x_n\}$ which does not converge but $\{|x_n|\}$ converges.
- 2. Prove that the set of natural numbers N is unbounded above. Prove that for any 3+4+5=12 $\epsilon > 0$ there exist a natural number $n \in N$ such that $0 < \frac{1}{n} < \epsilon$. If $x \in$ a bounded set S of real numbers, then prove that the set T formed by the element -x is also bounded and $\sup T = -\inf S$.
- 3. Show that if *B* is a countable subset of an uncountable set *A* then A-B is 3+4+5=12 uncountable. Show that derive set is closed. Prove that the union of two countable sets is countable.
- 4. Prove that every close interval [a, b] is a closed set. Find the derive set of 3+4+5=12 $S = \{\frac{1}{2^m} + \frac{1}{3^n} : m, n \in N\}$. Let *S* be a closed subset of *R*, then prove that $\overline{S} = S \cup S', S'$ being the derived set of *S*.

 $2 \times 6 = 12$

- 5. Use Cauchy's criterion to prove that the sequence $\{x_n\}$, 3+3+6=12 $x_n = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + (-1)^n \frac{1}{n}$ is convergent. Show that every convergent sequence is bounded. Show that every compact set of real numbers is closed and bounded.
- 6. Prove that $\lim_{n \to \infty} \frac{1}{n} (n!)^{1/n} = \frac{1}{e}$. Show that every monotonically increasing bounded 3+3+6=12sequence is convergent. Prove that the sequence $\{x_n\}$ defined by $x_1 = \sqrt{6}$, $x_{n+1} = \sqrt{6+x_n}$ for $n \ge 1$ converges to 3.
- 7. Let *S* be a non-empty subset of *R* having a limit point ξ . Show that there exists a 6+6=12 sequence $\{x_n\}$ of distinct elements of *S* such that $\lim x_n = l$. Test for convergence the following series

—×—

$$1 + \frac{(1!)^2}{2!}x + \frac{(2!)^2}{4!}x^2 + \frac{(3!)^2}{6!}x^3 + \dots$$