

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 2nd Semester Examination, 2020

CC3-MATHEMATICS

Real Analysis

MATH 21 HCC-III

Full Marks: 60

ASSIGNMENT
The figures in the margin indicate full marks. All symbols are of usual significance.

Answer Question No. 1 and any four from the rest

1. Attain all the following questions: $2 \times 6=12$
(a) What is a countable set?
(b) Give an example of a set which do not contain its supremum and infimum.
(c) Find the derived set of an open interval (a, b) of real numbers.
(d) Let $x_{n}=\frac{3 n+1}{n+2}$. Prove that the sequence $\left\{x_{n}\right\}$ is a strictly monotone increasing.
(e) Define the greatest lower bound of a set of bounded set of real numbers.
(f) Give an example of a sequence $\left\{x_{n}\right\}$ which does not converge but $\left\{\left|x_{n}\right|\right\}$ converges.
2. Prove that the set of natural numbers N is unbounded above. Prove that for any $3+4+5=12$ $\epsilon>0$ there exist a natural number $n \in N$ such that $0<\frac{1}{n}<\epsilon$. If $x \in$ a bounded set S of real numbers, then prove that the set T formed by the element $-x$ is also bounded and $\sup T=-\inf S$.
3. Show that if B is a countable subset of an uncountable set A then $A-B$ is $3+4+5=12$ uncountable. Show that derive set is closed. Prove that the union of two countable sets is countable.
4. Prove that every close interval $[a, b]$ is a closed set. Find the derive set of $3+4+5=12$ $S=\left\{\frac{1}{2^{m}}+\frac{1}{3^{n}}: m, n \in N\right\}$. Let S be a closed subset of R, then prove that $\bar{S}=S \cup S^{\prime}, S^{\prime}$ being the derived set of S.
5. Use Cauchy's criterion to prove that the sequence $\left\{x_{n}\right\}, 3+3+6=12$ $x_{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots . .+(-1)^{n} \frac{1}{n}$ is convergent. Show that every convergent sequence is bounded. Show that every compact set of real numbers is closed and bounded.
6. Prove that $\lim _{n \rightarrow \infty} \frac{1}{n}(n!)^{1 / n}=\frac{1}{e}$. Show that every monotonically increasing bounded $3+3+6=12$ sequence is convergent. Prove that the sequence $\left\{x_{n}\right\}$ defined by $x_{1}=\sqrt{6}$, $x_{n+1}=\sqrt{6+x_{n}}$ for $n \geq 1$ converges to 3 .
7. Let S be a non-empty subset of R having a limit point ξ. Show that there exists a
sequence $\left\{x_{n}\right\}$ of distinct elements of S such that $\lim x_{n}=l$. Test for convergence the following series

$$
1+\frac{(1!)^{2}}{2!} x+\frac{(2!)^{2}}{4!} x^{2}+\frac{(3!)^{2}}{6!} x^{3}+\ldots \ldots .
$$

\qquad

