## P.G. 1st Semester - 2018

## ECONOMICS

(Basic Econometrics-I)

## Paper : MECOCCT106

Full Marks : 40
Time: 2 Hours
The figures in the right-hand margin indicate marks.
Candidates are required to give their answers in their own words as far as practicable.

## Answer any four questions.

$10 \times 4=40$

1. Consider we have data on $Y, X_{1}$ and $X_{2}$ where $y$ is the dependent variable. Considering three separate regressions of Y on $\mathrm{X}_{1}, \mathrm{Y}$ on $\mathrm{X}_{2}$ and Y on $\mathrm{X}_{1}$ and $\mathrm{X}_{2}$. Derive the cases of $\mathrm{r}_{12}=0, \mathrm{r}_{12}=1$ and $\mathrm{r}_{12}<1$ keeping in mind the term multicollinearity.

10
2. Derive the MGF for Binomial distribution and find the values of first raw moments and second central moments.

$$
3+3+4
$$

3. a) Find the relation between mean, median and mode for Normal distribution.
b) Find the values of odd order central moments for normal distribution considering the MGF of this distribution. $6+4$
4. a) In the simple linear model $y_{i}=\alpha+\beta x_{i}+u_{i}$ $(i=1, \ldots, n)$. Suppose $E(u)=\phi(\neq 0)$. Show that the model can always be rewritten with the same slope but a new intercept and error, where the new error has a zero expected value.
b) Suppose, using the data on total personal expenditure ( X ) and expenditure on durable goods(y), a researcher has obtained the following regression result:

$$
\begin{aligned}
& \Gamma_{\mathrm{xy}}=-12.2+1.9 \mathrm{hrX} \\
& \mathrm{t}=(-20.3 \mathrm{y})(37.08) \\
& \mathrm{r}^{2}=0.9612
\end{aligned}
$$

Interpret the result.
$5+5$
5. Suppose, $Y_{i}=\beta+u_{i}$. Find the OLS estimator of $\beta$, Calculate the variances of $\beta$ and RSS. Does the estimated $\beta$ make intuitive sense.

Now consider the regression model $\mathrm{Y}_{\mathrm{i}}=\alpha+\beta \mathrm{X}_{\mathrm{i}}+\mathrm{u}_{\mathrm{i}} \mathrm{I}_{0}$, it worth adding the explanatory variable to this model. If not, why bother with regression analysis.

$$
2+2+1+3+2
$$

6. Consider the following regression model:
```
Model 1- \(\quad \hat{\mathrm{C}}_{\mathrm{i}}=0.0069+0.7582 \mathrm{X}_{\mathrm{i}}\)
    \(\mathrm{t}=(0.2624) \quad(2.8071)\)
    \(\mathrm{r}^{2}=0.9612\)
```

Model 2- $\quad \hat{C}_{i}=0.7623 X_{i}$
$t=(2.9542)$
$\mathrm{r}^{2}=0.4465$

What is the difference between the two regression models? How would you interpret the slope coefficients in the two models? Can you rartionalise the result that t -value of the slope coefficients in two models are different?
$3+4+3$

