P.G. 1st Semester - 2018
 MATHEMATICS
 Paper : MMATCCT101

Full Marks : 40
Time : 2 Hours
The figures in the right-hand margin indicate marks.
Candidates are required to give their answers in their own words as far as practicable.

Notations and symbols have their usual meaning.

Answer any five questions.

1. a) Prove that if G is a finite abelian group and p is a prime divisor of $O(G)$, then there exists atleast one element $a \in G$ of order p.
b) Show that the groups $(\mathrm{Q},+)\left(\mathrm{Q}^{+},.\right)$are not isomorphic, where Q is the set of all rational numbers and Q^{+}is the set of all positive rational numbers.

$$
5+3=8
$$

2. a) Let A and B be two cyclic groups of order m and n respectively. Then show that $A \times B$ is cyclic if and only if $\operatorname{gcd}(m, n)=1$.
b) Find all abelian groups of order 3^{4}.
c) Find the derived subgroup of permutation group

$$
\mathrm{S}_{3} . \quad 4+2+2=8
$$

3. a) Show that every group of order $p^{2} q$ is solvable where p and q are distinct primes.
b) Examine whether S_{4} is a solvable group or not.

$$
5+3=8
$$

4. a) Define inner automorphism of a group G.
b) Prove that any group of order 15 is cyclic.
c) Show that every finite p-group is nilpotent.

$$
2+3+3=8
$$

5. a) Show that any two elements a, b in an Euclidean domain R have gcd. Hence deduce that a and b are relatively prime iff $\lambda a+\mu b=1$ for some $\lambda, \mu \in \mathrm{R}$.
b) Find associates of $1+2 \sqrt{-5}$ in ring $\mathbb{Z}[\sqrt{-5}]$.

$$
5+3=8
$$

6. Prove that every principal ideal domain is unique factorisation domain but the converse is not true in general.
7. a) If K / F and L / K are two field extensions, then show that $[\mathrm{K}: \mathrm{F}]$ and $[\mathrm{L}: \mathrm{K}]$ are finite iff $[\mathrm{L}: F]$ is finite. Moreover show that

$$
[\mathrm{L}: \mathrm{F}]=[\mathrm{L}: \mathrm{K}][\mathrm{K}: \mathrm{F}]
$$

b) Show that a finite extension of prime degree is a simple extension. $\quad 5+3=8$
8. a) Normal extension of a normal extension of a field is also normal extension.- Justify your answer.
b) If F is a field of prime characteristic, then show that F is perfect iff every element of F has p-th root in F.
$3+5=8$

