P.G. 1st Semester - 2018

MATHEMATICS

Paper : MMATCCT102
Full Marks: 40
Time: 2 Hours
The figures in the right-hand margin indicate marks.
Candidates are required to give their answers in their own words as far as practicable.

Notations and symbols have their usual meaning.

Answer any five questions:

$$
8 \times 5=40
$$

1. a) Let f be a bounded variation of $[a, b]$ and $\mathrm{c} \in(\mathrm{a}, \mathrm{b})$. Then prove that
i) f is of bounded variation on [a, c] and [c, b];
ii) $\quad V_{f}(a, b)=V_{f}(a, c)+V_{f}(c, b)$
b) Let $f:[0,3] \rightarrow \mathbb{R}$ be defined by $f(x)=x^{2}-4 x+3$, $x \in[0,3]$. Show that f is a function of bounded variation on $[0,3]$. Also calculate $V_{f}[0,3]$.

$$
5+3
$$

d) Write down the relation between total derivate and directional derivative for the direction $\overrightarrow{\mathrm{u}}$.

$$
2+2+2+2
$$

5. a) Let u and v be two real-valued functions defined on a subset S of the complex plane. Assume also that u and v are differentiable at $c \in \operatorname{int}(s)$ and that the partial derivatives satisfy the Cauchy Riemann equations at C . Then show that the function $\mathrm{f}=\mathrm{u}+\mathrm{iv}$ has a derivative at c and $\mathrm{f}^{\prime}(\mathrm{c})=\mathrm{D}_{1} \mathrm{u}(\mathrm{c})+\mathrm{i} \mathrm{D}_{\mathrm{l}} \mathrm{V}(\mathrm{c})$.
b) Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear function. Then express T in matrix form.
6. Let $\mathrm{f}=\left(\mathrm{f}_{1}, \mathrm{f}_{2}, \mathrm{f}_{3}\right)$ be the vector values function defined as follows:
$\mathrm{f}_{\mathrm{k}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=\frac{\mathrm{x}_{\mathrm{k}}}{1+\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}}\left(\begin{array}{l}(\mathrm{k}=1,2,3), \mathrm{x}_{\mathrm{i}} \in \mathrm{R} \forall \mathrm{i} \\ \left(\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3} \neq-1\right)\end{array}\right.$
a) Show that $J_{f}\left(x_{1}, x_{2}, x_{3}\right)=\left(1+x_{1}+x_{2}+x_{3}\right)^{-4}$.
b) Show that f is one to one.
c) Compute f^{-1} explicitly. $2+3+3$
