175/Math

P.G. 1st Semester - 2018 MATHEMATICS Paper : MMATCCT102

Full Marks : 40 Time : 2 Hours The figures in the right-hand margin indicate marks.
Candidates are required to give their answers in their own words as far as practicable.

Notations and symbols have their usual meaning.

Answer any **five** questions: $8 \times 5 = 40$

- 1. a) Let f be a bounded variation of [a, b] and $c \in (a, b)$. Then prove that
 - i) f is of bounded variation on [a, c] and [c, b];
 - ii) $V_f(a, b)=V_f(a, c)+V_f(c, b)$
 - b) Let $f:[0,3] \rightarrow \mathbb{R}$ be defined by $f(x)=x^2-4x+3$, $x \in [0,3]$. Show that f is a function of bounded variation on [0,3]. Also calculate $V_f[0,3]$. 5+3

2. a) Let f be a function on [a, b] and α is monotone increasing function on [a, b]. Then show that, f is integrable with respect to α on [a, b] iff for every $\varepsilon > 0 \exists$ a partition P of [a, b] such that

 $U(p, f, \alpha) - L(p, f, \alpha) < \varepsilon$.

b) Evaluate,
$$\int_0^4 (x^2 + x + 1) d[x]$$
. 5+3

- 3. a) Assume $f \in R(\alpha)$ on [a, b] and assume that α has a continuous derivative α' on [a, b]. Then prove that Riemann integral $\int_a^b f(x)\alpha'(x)dx$ exists and $\int_a^b f(x)d\alpha(x) = \int_a^b f(x)\alpha'(x)dx$.
 - b) Define Rectifiable curves.
 - c) Evaluate $\int_{1}^{4} (x [x]) dx^{2}$. 4 + 2 + 2
- a) If directional derivative exists for a function f then all the partial derivative exists for f.– Give justification of the above statement.
 - b) Show that the converse of the above statement is not true in general.
 - c) Give an example of a function which have finite directional derivative for every direction but fail to be continuous at some point.

[Turn Over]

175/Math

[2]

- d) Write down the relation between total derivate and directional derivative for the direction \vec{u} . 2+2+2+2
- 5. a) Let u and v be two real-valued functions defined on a subset S of the complex plane. Assume also that u and v are differentiable at $c \in int(s)$ and that the partial derivatives satisfy the Cauchy Riemann equations at C. Then show that the function f=u+iv has a derivative at c and $f'(c) = D_1u(c) + iD_1V(c)$.
 - b) Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear function. Then express T in matrix form. 5+3
- 6. Let $f=(f_1, f_2, f_3)$ be the vector values function defined as follows:

$$f_{k}(x_{1}, x_{2}, x_{3}) = \frac{x_{k}}{1 + x_{1} + x_{2} + x_{3}} \frac{(k = 1, 2, 3), x_{i} \in \mathbb{R} \forall i}{(x_{1} + x_{2} + x_{3} \neq -1)}$$

- a) Show that $J_f(x_1, x_2, x_3) = (1 + x_1 + x_2 + x_3)^{-4}$.
- b) Show that f is one to one.
- c) Compute f^{-1} explicitly. 2+3+3

7. State and prove the sufficient condition for existence of extreme value of a function with two variables.

8

- 8. a) Show that the points, on the ellipse $5x^2 6xy + 5y^2 = 4$ which the tangents are at the greatest distance from the origin, are (1, 1) and (-1, -1).
 - b) If $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$, show that a stationary point of $a^3x^2 + b^3y^2 + c^3z^2$ is given by ax=by=cz and this is an extreme point if abc(a+b+c) is positive. 4+4

[3]