P.G. 1st Semester - 2018

MATHEMATICS

Paper : MMATCCT104
Full Marks : 40
Time: 2 Hours
The figures in the right-hand margin indicate marks.
Candidates are required to give their answers in their own words as far as practicable.

Notations and symbols have their usual meaning.

Answer any five questions:
$8 \times 5=40$

1. a) Discuss the singularities of the equation

$$
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}-n^{2}\right) y=0 \text { at } x=\infty
$$

b) By Frabenius method, find the series solution of $9 x(1-x) y^{\prime \prime}-12 y^{\prime}+4 y=0$ about origin.

$$
2+6
$$

2. a) Prove that, Legendre polynomial $P_{n}(x)$ can be written as $P_{n}(x)=\frac{1}{2^{n} \underline{n}} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}$.
b) Prove the recurrence relation

$$
\left(1-x^{2}\right) P_{n}^{\prime}(x)=(n+1)\left(x P_{n}(x)-P_{n+1}(x)\right)
$$

$$
4+4
$$

3. a) Show that generating function of the Bessel polynomial $\mathrm{J}_{\mathrm{n}}(\mathrm{x})$ is given by $\exp \left\{\frac{1}{2} \mathrm{x}\left(\mathrm{z}-\frac{1}{\mathrm{z}}\right)\right\}$.
b) Prove that $\mathrm{J}_{0}(\mathrm{x})=\frac{1}{\pi} \int_{0}^{\pi} \cos (\mathrm{x} \sin \theta) \mathrm{d} \theta$.

$$
4+4
$$

4. a) Prove that, for the Hermite polynomial $\mathrm{H}_{\mathrm{n}}(\mathrm{x})$,

$$
\int_{-\infty}^{\infty} e^{-x^{2}} H_{n}(x) H_{m}(x) d x=\left\{\begin{array}{cc}
0, & m \neq n \\
\sqrt{\pi} 2^{n}\lfloor n, & m=n .
\end{array}\right.
$$

b) Define Green function in polar co-ordinate system. Hence or otherwise show that,

$$
\nabla^{2}\left(\frac{1}{\mathrm{r}}\right)=-4 \pi \delta(\mathrm{r})
$$

where $\delta(\mathrm{r})$ is the dirac-delta function. $4+4$
5. a) Find the complete integral of the p.d.e. $p^{2} q^{2}+x^{2} y^{2}=x^{2} q^{2}\left(x^{2}+y^{2}\right)$.
b) Solve the p.d.e.

$$
\left(D^{2}+D D^{\prime}-6 D^{\prime 2}\right) z=x^{2} \sin (x+y)
$$

6. Reduce the following p.d.e. to its canonical form. Hence solve it.

$$
\left(1+x^{2}\right) Z_{x x}+\left(1+y^{2}\right) Z_{y y}+x Z_{x}+y Z_{y}=0 \quad 5+3
$$

7. a) A thin rectangular homogeneous thermally conducted plate occupies the region $0 \leq x \leq a$, $0 \leq y \leq b$, The edge $y=0$ held at temperature $\operatorname{Tx}(x-a)$, where T is constant and other edges are maintained at 0°. Find the steady state temperature inside the plate.
b) Reduce the Laplace equation $\nabla^{2} u=0$ in the plane of polar co-ordinates (r, θ).$4+4$
8. a) Find the D-Alembert's solution of the initial
value wave equation $\frac{\partial^{2} u}{\partial x^{2}}=c^{2} \frac{\partial^{2} u}{\partial t^{2}}$, $-\infty<\mathrm{x}<\infty, \mathrm{t} \geq 0$ subject to the initial conditions

$$
u(x, 0)=\eta(x) \text { and } \frac{\partial u}{\partial t}(x, 0)=\gamma(x)
$$

b) Prove the uniqueness of the solution of the wave equation.
$4+4$

