P.G. 1st Semester-2018
 PHYSICS
 Paper : MPHYCCT103

Full Marks: 40

Time : 2 Hours
The figures in the right-hand margin indicate marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer Q. No. 1 and any three from the rest.

1. Answer any five from the following: $2 \times 5=10$
a) If $\sigma_{x}, \sigma_{y}, \sigma_{z}$ are the Pauli spin matrices, show that $\sigma_{x} \sigma_{y} \sigma_{z}=1$.
b) Show that $\hat{\mathrm{J}}_{+} \hat{\mathrm{J}}_{-}=\hat{\mathrm{J}}^{2}-\hat{\mathrm{J}}_{\mathrm{Z}}^{2}+\hbar \mathrm{J}_{z}$
$\hat{\mathrm{J}}_{+}$and $\hat{\mathrm{J}}_{-}$are the ladder operators constructed from the angular momentum operators $\hat{\mathrm{J}}_{\mathrm{x}}, \hat{\mathrm{J}}_{\mathrm{y}}$ and $\hat{\mathrm{J}}_{\mathrm{z}}$.
c) Formulate Schrödinger's equation of motion in the interaction picture.
d) Prove that $\sigma_{i} \sigma_{j}+\sigma_{j} \sigma_{i}=0$ if $\mathrm{i} \neq \mathrm{j}$.
e) A one-dimensional simple harmonic oscillator is in the state $\psi=\frac{\sqrt{2}}{3} \psi_{1}+\frac{2}{3} \psi_{3}+\frac{1}{\sqrt{3}} \psi_{5}$.

If a measurement of energy is done then find the most probable value of energy.
f) Find the matrix representation values J_{+}and J_{-} for $\mathrm{j}=2$.
g) Wave function of a particle is given to be
$\psi(\mathrm{x})=\frac{1}{\sqrt{2 \mathrm{a}}}$ for $|\mathrm{x}|<\mathrm{a}$
and $\psi(\mathrm{x})=0$ for $|\mathrm{x}|>\mathrm{a}$
Find the uncertainty in position.
h) Find out the explicit expression for the operator $\left(\frac{d}{d x}+x\right)^{2}$.
2. a) What is the method of variation?
b) For a harmonic oscillator, using a Gaussian wave function $\left(\mathrm{Ae}^{-\alpha x^{2}}\right)$ as a trial wavefunction, estimate the ground state energy.
c) Draw the variation of Energy with respect to α.

$$
2+6+2=10
$$

3. a) Find the connection formulae for the W.K.B solution across a turning point $x=a$ if $\mathrm{E}>\mathrm{V}(\mathrm{x})$ for $\mathrm{x}<\mathrm{a}$.
109/Phs.
(2)
b) Obtain by the W.K.B method, the energy levels in the one-dimensional potential

$$
\begin{aligned}
\mathrm{V}(\mathrm{x}) & =\frac{\mathrm{V}_{0}|\mathrm{x}|}{\mathrm{a}} \text { for }-\mathrm{a} \leq \mathrm{x} \leq \mathrm{a} \\
& =\mathrm{V}_{0} \text { for }|\mathrm{x}|>\mathrm{a}
\end{aligned} \quad 5+5=10
$$

4. The Hamiltonian of a linear harmonic Oscillator is $\mathrm{H}=\frac{\mathrm{P}^{2}}{2 \mathrm{~m}}+\frac{1}{2} \mathrm{~m} \omega^{2} \mathrm{x}^{2}$ if $\mathrm{a}=\frac{1}{\sqrt{2}}(\hat{\mathrm{x}}+\mathrm{i} \hat{\mathrm{p}})$ in atomic unit.
a) Evaluate the commutator $\left[a, a^{+}\right]$
b) Show that H can be put in the form

$$
\mathrm{H}=\left(\mathrm{a}^{+} \mathrm{a}+\frac{1}{2}\right) \hbar \omega
$$

Hence prove $\mathrm{H}\langle\mathrm{n}\rangle=\left(\mathrm{n}+\frac{1}{2}\right) \hbar \omega|\mathrm{n}\rangle$.
c) Show that $\mathrm{a}, \mathrm{a}^{+}$are not Hermitian but $\mathrm{a}^{+} \mathrm{a}$ is.
d) Show that a coherent state is a eigen state of annihilation opeartor a.
e) Write down the Schrödinger equation for Helium atom.

$$
2+3+2+2+1=10
$$

5. a) Obtain the Clebsch-Gordan co-efficients for $\mathrm{J}=1$ and $\mathrm{J}=0$ where $\mathrm{j}_{1}=1$ and $\mathrm{j}_{2}=\frac{1}{2}$ for all possible values from the first principles.
b) Deduce the experession such as we can say that total angular momentum $\overrightarrow{\mathrm{J}}$ of a system is the generator of infinitesimal rotations. $6+4=10$
6. a) Establish Heisenberg equation of motion. Write the difference between the Schrödinger and Heisenberg pictures of equation of motion.
b) An one-dimensional oscillator is perturbed by its anharmonicity of bx^{4}, where b is a constant and x represent its position. Obtain the ground state energy correction of the oscillator.

$$
(4+2)+4=10
$$

