2016 BCA

[HONOURS]

(Digital Logic & Computer Organization)

Paper: BCA-103

Full Marks: 80

Time: 4 Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer Question No. 1 and any four from the rest.

- 1. Answer any **eight** questions:
- $2\times8=16$
- i) Convert binary number (101101.1101)₂ to octal.
- ii) Design NOR gate using NAND gates only.
- iii) How many flip/flops are needed to design a mod 10 counter?
- iv) Write the differences between static and dynamic RAM.
- v) What is race problem?
- vi) Find the gray code of (101101),.

[Turn over]

- vii) Differentiate between 1's complement and 2's complement representation.
- viii) What is CCD memory?
- ix) What is the use of Don't Care Condition?
- x) Write down the truth table of S-R Flip/Flop.
- xi) What is a ripple counter?
- xii) What is addressing mode?
- 2. a) Express the following function in sum of min terms and a product of max terms F(x,y,z) = (xy+z)(y+xz).
 - b) Perform the substraction with the following binary no's using 2's complement arithmetic: $(11010)_{2} (10000)_{2} = ?$
 - The sum of two no's written as 13 and 22 is 101. What is the base of the number system?
 - d) Show that dual of EX-NOR is equal to it's complement.
 - e) Find the 10's complement of $(539)_{11}$. 5+3+3+3+2=16
- 3. a) Simplify the following function using K-map. $F(A,B,C,D) = \sum (2,3,12,13,14,15) + d(0,4,9).$
 - b) Design a full substractor circuit.

61/BCA

[2]

c) Implement the following function using NAND gates. Assume that both normal and complements input are available

$$F = (AB + A'B')(CD' + C'D)$$

- d) Write down the differences between BCD code and EX-3 code. 5+5+4+2=16
- 4. a) Implement a Full adder circuit with multiplexer.
 - b) Design a combinational circuit to generate Even parity of four bit lengths.
 - c) Design a binary comparator to compare two binary numbers A & B each consisting of two bits.

 5+7+4=16
- 5. a) Explain the operation of a S-R flip/flop. What are its limitation?
 - b) Design a counter with the following binary sequence: 0, 4, 2, 1, 6 and repeat. Use J-K flip/flop.
 - c) Explain the operation of universal shift register. 4+7+5=16
- 6. a) Explain the Von-Neuman architecture.
 - b) Discuss various data transfer techniques with the help of block diagram and timing diagram.

Explain the DMA transfer process briefly. 4+8+4=16

7. Write short notes (any four): $4\times4=16$

- a) Strobe based and handshare based communication
- b) Virtual Memory
- c) Sequential Machine design
- d) Microprogrammed control unit
- e) Instruction Pipelining
- f) PLAs
- g) BUS

[Turn over]